

PRINTER FORENSICS

Stephan Escher 09.05.2019

Metadata

- Stephan Escher (stephan.escher@tu-dresden.de)
- Lehrstuhl Datenschutz und Datensicherheit TU Dresden
- Projekt: Duplikatsprüfung und Forensik an gedruckten Dokumenten
- https://dfd.inf.tu-dresden.de
- Kooperationspartner: Dence GmbH (dence.de)
- Förderer: BmWi

• Last 30 years: development of high quality and low-cost printers, scanners, image manipulation tools

05.2019 Folie 3

- Last 30 years: development of high quality and low-cost printers, scanners, image manipulation tools
- Used everywhere: PIDs, credentials, money, certificates, contracts, ...

- Last 30 years: development of high quality and low-cost printers, scanners, image manipulation tools
- Used everywhere: PIDs, credentials, money, certificates, contracts, ...
- Anybody can create, manipulate and duplicate documents and images

- Last 30 years: development of high quality and low-cost printers, scanners, image manipulation tools
- Used everywhere: PIDs, credentials, money, certificates, contracts, ...
- Anybody can create, manipulate and duplicate documents and images

Project Use Case - Insurance

Project Use Case - Insurance

Printer Forensics

- Printer technology
- Printer device
- Comparison of multiple documents
- Forgery detection
- Age of a document

- Printer technology
- Printer device
- Comparison of multiple documents
- Forgery detection
- Age of a document

- Printer technology
- Printer device
- Comparison of multiple documents
- Forgery detection
- Age of a document

Same source printer?

- Printer technology
- Printer identification
- Comparison of multiple documents
- Forgery detection
- Age of a document

Possible Solutions

Active Techniques

embed proactively information (extrinsic signatures) in documents before or while printing

Passive Techniques

use print artifacts (intrinsic signatures) caused by the printing mechanism

Passive Techniques

- Use of intrinsic signatures
 - → printing artifacts which are technology / brand / model / device dependent
 - → electromechanical / mechanical imperfections, differences between constructions of printer models
 - → should be stable over several printouts

Intrinsic Signatures - Text

- Micro textures
- Edge structur
 - Roughness
 - Gradient
- Overspray
- Geometric distortion

Intrinsic Signatures - Images

Halftoning

- Arrangement (AM)
- Dot shape
- Color noise
- Geometric distortion (Banding, ...)

Intrinsic Signatures - Images

- Halftoning
 - Arrangement (AM)
 - Dot shape
- Color noise
- Geometric distortion (Banding, ...)

Findings

- Many potentially influencing parameters which could change the signature itself
 - Driver settings (e.g. toner save modi, resolution), age of the toner, used paper (plain vs. recycled), different font types, ...
 - Forgery of signature sometimes possible (e.g. halftoning)
- Possible overlaps for large datasets
- Max. identification rate: printer model
 - → *active methods* are more accurate

Active Techniques

- Embed information in documents before or while printing (extrinsic signatures)
- Concrete information within the document
- Needs access to the document or printer device
- Unusable for project use case except Tracking Dots

- Tiny Yellow Dots (~0.003 mm not visible to the naked eye) ordered in matrices
- Repeated over entire document
- Implemented in colour laser printers itself
 - → embedded while printing
- Found in 2005 by EFF and DFKI
 - Decoded 1 Pattern
 - Tracking dot pattern contains a serial number, date and time

→ Reuse Tracking Dots for Project Use Case?

- Official reason, embedded information and structure unknown
- Several manufacturers contacted
- Printer manufacturer (document from 2010):
 Please contact the following institutions:
 - Central Bank Counterfeit Deterrence Group (CBCDG)
 - German Federal Bank
- CBCDG: "Not a CBCDG product"

Tracking Dots - Extraction

- Developed own extraction algorithm
- Scanned printout → digital tracking dot matrix

Tracking Dots - Extraction

Tracking Dots - Dataset

- 1286 prints with images and text from
 - 141 colour laser printers a 106 models by 18 manufacturers
 - Own dataset and from DFKI
- Extracted all tracking dot pattern

Tracking Dots - Patterns

- 5 different patterns found in dataset
- 4 Pattern structure decoded (marker, information bits, error detection bits, ...)
- 2 Pattern fully decoded (information)
- Nearly all colour laser printers affected

Pattern 4

Pattern 1

Pattern 2

Pattern 3

Pattern 5

Tracking Dots - Patterns

Pattern	Manufacturer
1	Lanier, NRG, Ricoh, Savin
2	HP, Kyocera, Lexmark, Okidata, Ricoh
3	Epson, Konica Minolta
4	Dell, Epson, Xerox
5	Canon

Samsung, Tektronix and Brother not affected (only small quantity in dataset)

Pattern 1

- (7,6,2) even parity code
- Red: marking dots
- Serial number as 4 binary bit blocks

Tracking Dots - Pattern 4

- 6 digits of serial number, date and time
- (8,7,2) odd parity code (15,14,2) odd parity code
- Repeated in offset

Tracking Dots - Pattern 4

Tracking Dots - Privacy

- No access control: Tracking data can be read by anyone
- Privacy and Security Chair!
 - → Prevent arbitary tracking
 - → Developed also anonymization methods

Tracking Dots - Privacy

- Question by Satu Hassi (Verts/ALE) 1: "Does the Commission believe that the current practices of manufacturers [...] are consistent with relevant Community law on data protection and consumer protection?"
- EU Parliament:
 The dots "might violate the right to protection of personal data"
- Time Stamp: 2008

Tracking Dots - Privacy

- Serial Number = unique identification number
- Possible linkability to e.g. credit card number, IP address, ...
- Dots possibly used in court by NSA in 2017 because of leaking secret documents

Remove Tracking Dots on Scans

- Mask printed area of the document
- Invert Mask
- Fill white

Mask Tracking Dots on Print outs

- → Overlaying the tracking dots
- Position of dots must be known
 - → Print calibration page with position markers
- Scan it
- Tracking dot extraction
- Measure distance between tracking dots and markers

Mask Tracking Dots on Print outs

- Fill extracted tracking dot matrice with additional dots to destroy encoded information
- Embed tracking dot mask in document with correct distances and overprint existing tracking dots

DEDA

- Toolkit for whole workflow of extracting, decoding and anonymization of tracking dots
- Install Python 3
- \$ pip3 install deda
- \$ deda_gui
- dfd.inf.tu-dresden.de

Summary

- Tracking dots reusable for project use case
 - If tracking dots detected and decodable use these
 - Else use intrinsic signatures
- Content still unknown / hidden by manufacturers
- We have
 - Identified codes
 - Boosted data privacy
 - Designed anonymisation method
 - Created and evaluated own toolkit
- In work: Pattern 5, Decoding of Pattern 2 and 3